
Software Artifact Analyzer

Developer Guide
Version 1.0.0 July 2024

1 Introduction... 2
1.1 Current System Architecture..2
1.2 Build & Maintenance.. 3

2. CASE Tool Integration Applications...3
2.1 Setting Up An GitHub Application.. 4
2.2 Setting Up An Atlassian Jira Application..4

3 Data Collection & Graph Database..5
3.1 Flask Server... 5
3.2 UI..5
3.3 Data Retrieval.. 6
3.4 Data Cleaner..7
3.5 Graph Builder...7
3.6 Creating and Connecting to a Neo4j Database..8

3.6.1 Establishing a New Neo4j Database Instance.. 8
3.6.2 Preparing the NEO4J Database Instance... 9
3.6.3 Connecting NEO4J Database Instance to the System... 9

4 Custom Folder...10
4.1 config..11
4.2 customization-service...12

toolbar-customization.service.ts...12
navbar-customization.service.ts...13
cy-style-customization.service.ts..13
group-customization.service.ts...13
context-menu-customization.service.ts.. 13

4.3 operational-tabs... 13
4.4 analyses...14
4.4 Database Connection...17

5 Starting Software Artifact Analyzer...17
5.1 Development Mode..17
5.2 Production Mode..17

6 Custom Procedure..18

1 Introduction
This guide will show you how to develop new features inside the Software Artifact Analyzer tool
(SAA), designed to visually analyze your software artifacts and their relationships and improve the
software development processes. SAA meticulously analyzes various software artifacts, including
source code files, pull requests, issues, and commits, and their interconnected relationships with
developers within a project. It uses an advanced drawing canvas with features such as a context
menus, visual cues, and more to facilitate this comprehensive analysis. SAA uses a structured
approach, and at its core is the open-source toolkit Visuall [1], which provides a solid foundation for
its functionalities such as the user-friendly interface for developers to interact with the system. With
this interface, developers can explore and make informed decisions by leveraging insights derived
from the comprehensive artifact traceability graph. This guide details how a custom software
analytics application can be integrated into SAA. We assume the reader has already gone over the
SAA User Guide.

As many features are inherited from the base toolkit Visuall [1], you might also want to refer to
Visuall Develop Guide for details on customizations of generic features.

Figure 1 Current system architecture and flow of information

1.1 Current System Architecture

1, 2) Data Collection Service retrieves project data from respective backends as a JSON format.
3) The metadata is processed and cleaned by the data retrieval service to prepare it for use by the
Graph Builder service.
4) Based on the prepared graph model, the Graph Builder Service creates and merges nodes and
edges in the Neo4j database.
5) The database instance is connected to the Visuall [1] library.

https://docs.google.com/document/d/1MHoBk2O2AREYiKwqZuDkHLkdlWwUkYMHzeuugqnVxFY/edit?usp=sharing
https://docs.google.com/document/d/1Sk4Xy4hJnYsmevef9e6lcHt_6a0nKkf8eJuEdiU6W6Q/edit#heading=h.utrgnlpqknbz

6) Visuall [1] uses the Cytoscape.js library for web-based graphic and network visualization.
7) SAA engine is developed on top of the Visuall [1] toolkit and provides a user interface for
developers to interact with the system.
8,9,10) The tool engine uses GitHub and Jira APIs, to access Github and Jira platforms to send data
to these platforms through these APIs.

1.2 Build & Maintenance

To establish their development environment, developers can initiate the process by creating a fork of
software-artifact-analyzer-configuration and software-artifact-analyzer. It is recommended to fork all
branches. Forking all branches ensures that developers have a complete replica of the original
repository, including all development branches. This allows them to work on feature branches, bug
fixes, or other changes without any limitations.
When needed, they can synchronize their forked repositories with the original repositories by
executing the following commands:

Add the original repository as a remote

git remote add base

https://github.com/iVis-at-Bilkent/software-artifact-analyzer.git

Fetch all the commits from the original repository

git fetch base

git merge base/master

To selectively integrate specific commits from the original software-artifact-analyzer repository,
developers can use the cherry-pick command:

Fetch a specific commit

git cherry-pick -n 12ae1…

2. CASE Tool Integration Applications

SAA is designed to be used with tools like Jira and GitHub. In order for users to use SAA with their
own projects, every SAA application should implement an integration flow for their own SAA
implementations. This section will detail how developers can create GitHub and Atlassian
applications for SAA that users can use to authorize and start using SAA applications with their own
data. To get started, developers need to set up GitHub and Atlassian applications with appropriate
OAuth configurations. Follow the steps below to complete the setup.

Figure 2: CASE tools integration flow
Prerequisites:

https://github.com/ivis-at-bilkent/software-artifact-analyzer-configuration
https://github.com/iVis-at-Bilkent/software-artifact-analyzer

● A GitHub account
● An Atlassian account

2.1 Setting Up An GitHub Application

1. Create a GitHub App
○ Go to GitHub Developer Settings and click on "New GitHub App".
○ Fill in the necessary details for your application:

■ GitHub App name: Choose a name for your app.
■ Homepage URL: http://localhost:4400
■ Callback URL: http://localhost:4400/?setup=Github
■ Webhook URL: (Optional, depending on your needs)

Note: If your app runs on a server or different port, configure it accordingly

○ Set the necessary User permissions and Repository permissions.
○ Click on "Create GitHub App".

2. Configure OAuth 2.0
○ Once the app is created, navigate to the app settings.
○ Under "OAuth 2.0", generate new credentials for the app.
○ Make sure to save the Client ID and Client Secret.

2.2 Setting Up An Atlassian Jira Application

1. Create an Atlassian App
○ Go to the Atlassian Developer Console and click on "Create a new app".
○ Select "OAuth 2.0 integration" and click "Next".
○ Fill in the necessary details:

■ App name: Choose a name for your app.
■ Callback URL: http://localhost:4400/?setup=Jira

○ Configure the permissions for the app. Make sure to select the appropriate scopes
that your app will require.

Figure 3: Atlassian app permissions

2. Configure the Classic Jira Platform REST API
○ Navigate to the "Authorization" section in the app settings.
○ Configure the Classic Jira platform REST API authorization URL.

3. Authorization Configuration in SAA

https://github.com/settings/apps
http://localhost:4400
http://localhost:4400/?setup=Github
http://localhost:4400/?setup=Jira

● Navigate to the setup.component.ts file in the software-artifact-analyzer repository.
● Replace the existing Jira URL with the following code.

○ Add offline_access parameter to scope.
○ Change YOUR_USER_BOUND_VALUE with state.

Figure 4: Authorization configuration in software-artifact-analyzer

3 Data Collection & Graph Database
The data collection and graph-building tasks are orchestrated by the
software-artifact-analyzer-configuration repository, which forms an integral part of SAA. The
software-artifact-analyzer-configuration operates as a Flask Angular project, providing a
user-friendly interface for users to retrieve their project data. The backend architecture comprises
three distinct modules: data retrieval, data cleaner, and graph builder. Each module serves a
specific purpose and is designed to be adaptable to new requirements.

3.1 Flask Server

The server.py file encompasses the definition of all API endpoints responsible for data retrieval,
confirming cleaned data for use by the graph builder module, and handling various tasks in
collaboration with the SAA. This includes tasks such as user authentication checks and interactions
with the Jira API for comment submissions.

To start the flask server execute:
pip install -r requirements.txt

python server.py

3.2 UI

The user interface of the software-artifact-analyzer-configuration project is built on Angular. The
central component is the stepper, which encapsulates each step of the data collection and
graph-building process. Additional new steps can be seamlessly integrated into the stepper
component to accommodate specific requirements of new analyses. The Angular project
communicates with the Flask server, exchanging data through RESTful APIs.

To start the UI, first, you should navigate to the ui folder:

cd ui

Before running the Angular UI in development mode, make sure to install the project dependencies
using:

https://github.com/iVis-at-Bilkent/software-artifact-analyzer/blob/unstable/src/app/visuall/setup/setup.component.ts
https://github.com/iVis-at-Bilkent/software-artifact-analyzer
https://github.com/ivis-at-bilkent/software-artifact-analyzer-configuration
https://github.com/LaraMerdol/software-artifact-analyzer-configuration/blob/main/server.py

npm install

To run the Angular UI in development mode, you can use the Angular CLI's ng serve command.
This command compiles the application, launches the development server, and opens your
application in a default web browser http://localhost:4200/.

npm run ng serve

To prepare your Angular application for production, you need to build the application using the
Angular CLI's ng build command. After building, you can use a simple Node.js server to serve the
production-ready application.

● Build the Angular application:

npm run ng build

This will generate a dist/ directory containing the production-ready files.

● Start the Node.js server:

npm start

By default, the server will start on port 4450. You can access your production-ready application by
navigating to http://localhost:4450/ in your web browser. You can access the production-ready
application through the SAA user interface's top navbar by navigating to "Project | New..." The
production-ready application is embedded as an iframe within the SAA user interface.

3.3 Data Retrieval

The data retrieval module serves as a critical component within the
software-artifact-analyzer-configuration repository, seamlessly integrating Perceval backends for the
three primary data sources: Git, GitHub, and Jira. The intricate process involves retrieving data from
each of these sources and storing it meticulously in the data folder, specifically in JSON format. For
the incorporation of an additional data source, the procedure is as follows: the corresponding
backend must be introduced into the data retrieval module. This newly integrated backend should
then undergo a transformation process, converting the retrieved data into JSON format.
Subsequently, the processed data should find its place under the data folder.

/software-artifact-analyzer-configuration
|-- data
| |-- git_commit.json
| |-- github_pr.json
| |-- jira_issue.json
| |-- new_backend.json # Example for the newly integrated backend
|-- data_retrieval
| |-- data_retrieval.py
| |-- perceval_git_commit.py
| |-- perceval_github_pr.py
| |-- perceval_jira_issue.py

http://localhost:4200/
http://localhost:4450/
https://github.com/LaraMerdol/software-artifact-analyzer-configuration
https://github.com/LaraMerdol/software-artifact-analyzer-configuration/tree/main/data_retrieval
https://github.com/LaraMerdol/software-artifact-analyzer-configuration/tree/main/data

| |-- new_backend.py # Corresponding file for the new backend

3.4 Data Cleaner

The data cleaner module is primarily responsible for identifying similar developers across different
sources and merging them into a unified developer profile. This module is designed to function
seamlessly without requiring any customization.

3.5 Graph Builder

The Graph Builder module serves as the bridge between your application and the Neo4j database
instance. It facilitates the integration by establishing a secure connection. To initiate this connection,
you must specify the bolt address of your Neo4j instance along with the required authentication
credentials. These credentials, including the username and password for the Neo4j driver, should be
carefully defined within the graphbuilder/GraphBuilder.py file.

The connectors/Neo4jConnection.py is instrumental in handling and executing various tasks, such
as merging or creating new nodes and edges. The merging process involves utilizing source
classes and methods, which are specific to each backend. For every type of artifact in our project,
there is a corresponding source class. These source classes are responsible for creating instances
based on retrieved data and are then used to merge or create the artifact in the Neo4j database.

If you're introducing a new backend for a different type of artifact, follow these steps:

1. Define a new source class for the specific artifact type in the

'graph_builder/connectors/extra_source_classes.py' file. Let's call this class ArtifactType1.

Define the structure and methods for handling ArtifactType1 data.

graph_builder/connectors/extra_source_classes.py

class ArtifactType1:

Import the newly created source class (ArtifactType1) into the Neo4jConnection.py file.
#graph_builder/connectors/Neo4jConnection.py

from graph_builder.connectors.extra_source_classes import

ArtifactType1

2. Update the classes dictionary in the addMultipleArtifacts method in Neo4jConnection
classes = {

"git": GitCommit,

"jira": JiraIssue,

"github-pr": GithubPr,

"artifacttype1": ArtifactType1, # Add this line…}

https://github.com/LaraMerdol/software-artifact-analyzer-configuration/blob/unstable/graph_builder/graphbuilder/GraphBuilder.py
https://github.com/LaraMerdol/software-artifact-analyzer-configuration/blob/unstable/graph_builder/connectors/Neo4jConnection.py

3. Add a new method to the Neo4jConnection class that includes the logic for merging

ArtifactType1 and its respective edges into the graph.

def __addArtifcat1(self, tx, artifact1: ArtifactType1, projectId,

analysisId):

4. Update the methods dictionary in the addMultipleArtifacts method in Neo4jConnection
methods = {

"git": self.__addCommit,

"jira": self.__addIssue,

"github-pr": self.__addPullRequest,

"artifact1": self.__addArtifcat1, # Add this line

With these modifications, your Neo4jConnection class will be capable of handling the merging of

the new artifact type (ArtifactType1) into the Neo4j database.

3.6 Creating and Connecting to a Neo4j Database

In SAA, we utilize Neo4j as our database management system. Developers may need to create
their own Neo4j database instance for testing, development, or customization purposes. This
section provides guidelines on how developers can establish a new Neo4j database instance and
connect it to our system.

3.6.1 Establishing a New Neo4j Database Instance

Developers have the flexibility to create their own Neo4j database instances using various methods.
Here, we discuss a common approach which is using Neo4j Desktop:

1. Install Neo4j Desktop: If not already installed, download and install Neo4j Desktop from

here.

2. Create a New Project: Open Neo4j Desktop and create a new project by clicking on the

"Add" button and selecting "New Project."

3. Add a New Database: Within the created project, click on the "Add Database" button.

Choose the desired Neo4j version and configure the database settings as needed. SAA is

compatible with Neo4j 4 and later versions.

4. Start the Database: Once configured, start the database instance by clicking on the "Start"

button.

https://neo4j.com/download/

3.6.2 Preparing the NEO4J Database Instance

Before connecting to the system, it is recommended to install essential plugins such as APOC.
Additionally, if you are using custom procedures, ensure they are correctly configured and available
within the Neo4j database instance.

Installing APOC (Awesome Procedures on Cypher): APOC [2] is a popular library of procedures
and functions for Neo4j, providing additional functionalities beyond what is available in the core
Cypher language. Since our SAA utilizes APOC functionalities, it is essential to install the APOC
plugin before connecting to the system.

1. Open Neo4j Desktop: Launch Neo4j Desktop and select the desired project.

2. Add Plugin: In the project overview, click on the "Add Plugin" button.

3. Select APOC: Choose APOC from the list of available plugins and click "Install." Neo4j

Desktop will automatically handle the installation process.

4. Restart Database: After installation, restart the Neo4j database instance associated with

the project to apply the changes.

Installing Custom Procedures: If you are using custom procedures in your SAA project, ensure

they are correctly configured and available within the Neo4j database instance. You can check how

to add custom procedures from Section 6.

3.6.3 Connecting NEO4J Database Instance to the System

Once the Neo4j database instance is up and running, developers can connect it to the
software-artifact-analyzer-configuration/graph-builder system using the Bolt protocol and the
software-artifact-analyzer system using the HTTP protocol. Here's how to establish the connection:

1. Obtain Bolt Address: Determine the Bolt address of the Neo4j database instance. This

typically follows the format bolt://<host>:<port>.

2. Obtain HTTP Address: Determine the HTTP address of the Neo4j database instance. This

typically follows the format http://<host>:<port>.

3. Update Configuration:

a. For the software-artifact-analyzer-configuration, initiate this connection by

specifying the Bolt address of your Neo4j instance along with the required

https://github.com/LaraMerdol/software-artifact-analyzer-configuration/tree/main/graph_builder
https://github.com/iVis-at-Bilkent/software-artifact-analyzer

authentication credentials. These credentials, including the username and

password for the Neo4j driver, should be carefully defined within the

GraphBuilder.py file.

b. For the software-artifact-analyzer, update the environment files with the new HTTP

address of the Neo4j database instance as described in Section 4.4.

By following these steps, developers can establish connections between the Neo4j database
instance and both the software-artifact-analyzer-configuration/graph-builder and
software-artifact-analyzer systems, facilitating seamless data interaction and analysis.

Additional Resources
For more detailed instructions on creating and configuring Neo4j databases, developers can refer to
the official Neo4j documentation:

- Neo4j Desktop Documentation
- Establishing a New Neo4j
- Neo4j Documentation

4 Custom Folder
SAA was created using Visuall [1]. Visuall is composed of three main Angular modules: AppModule,
CustomizationModule, and SharedModule. To customize SAA to meet our specific requirements, we
made changes to the CustomizationModule of the Visuall.

Figure 5: Basic Architecture of Visuall
The custom folder includes 3 subfolders and a customization.module.ts file. Below you can
find the explanation about each folder and file.

/src
|-- app
| |-- custom
| | |-- analyses
| | |-- customization-service
| | |-- config
| | |-- operational-tabs
| | |-- customization.module.ts

https://github.com/LaraMerdol/software-artifact-analyzer-configuration/blob/main/graph_builder/graphbuilder/GraphBuilder.py
https://github.com/LaraMerdol/software-artifact-analyzer-configuration/tree/main/graph_builder
https://github.com/iVis-at-Bilkent/software-artifact-analyzer
https://neo4j.com/docs/desktop-manual/current/
https://neo4j.com/docs/desktop-manual/current/operations/create-dbms/
https://neo4j.com/docs/

Figure 6: SAA UI

4.1 config

The config folder includes configuration files such as app-description.json file and
enum.json.
/custom
|-- config
| |-- app_description.json
| |-- enum.json

The app description file includes the description for each node and edge type. You can refer to
the Visuall Developer Guide for further explanation about the descriptions of graph elements.

To add a new node type or edge type:

1. Define a new class of node (e.g., "Method") under the "objects" section with associated

properties and data types.

2. If necessary, define a new edge type under the "Relations" section, specifying the source

and target nodes.

3. If the new node or edge requires specific styling, update the "Styling graph objects"

section accordingly.

4. Define the time mapping for the newly added edge and node types

5. If the new node type involves an enum property, update the "Enumeration Mapping"

section and add corresponding values to "enums.json." Ensure that the necessary

https://github.com/iVis-at-Bilkent/software-artifact-analyzer/blob/unstable/src/app/custom/config/app_description.json
https://docs.google.com/document/d/1Sk4Xy4hJnYsmevef9e6lcHt_6a0nKkf8eJuEdiU6W6Q/edit?usp=sharing

properties, data types, and styling configurations are properly set based on the

requirements of the new node or edge type.

Once this file is prepared, the style generator reads the description file and the Cytoscape.js style
file and modifies index.html, styles.css, properties.json, and stylesheet.json files
using the information in the description file. To do so:

● First, navigate to the src folder

● Then, execute node style-generator.js (by default it will use app_description.json)

Although it might not be necessary, it is recommended to always run this command after changing
the description file.

Selecting Node Icon and Color

In the SAA drawing canvas, each node type is represented by an icon and assigned a specific color.
The edges originating from nodes also adopt the same color scheme for consistency and clarity.
When selecting icons for your nodes, it's essential to consider the following points:

● Use SVG icon images
● Ensure that icons for nodes are as round as possible to facilitate perpendicular edge

connections from any location.
● Opt for dark colors when selecting node colors to enhance visibility and contrast within the

interface.
● Prioritize simplicity and legibility when choosing iconography to maintain clarity and prevent

visual clutter.

4.2 customization-service

The customization-service folder houses files dedicated to tailoring features from the Visuall
[1], including the Menubar, toolbar, and context menu.

/custom
|-- analyses
|-- customization-service
| |-- context-menu-customization.service.ts
| |-- cy-style-customization.service.ts
| |-- group-customization.service.ts
| |-- navbar-customization.service.ts
| |-- theoretic-properties-custom.service.ts
| |-- toolbar-customization.service.ts

toolbar-customization.service.ts
For adding a new item to the toolbar menu or modifying the existing toolbar, this file is where you
should make your changes.

https://github.com/iVis-at-Bilkent/software-artifact-analyzer/blob/unstable/src/app/custom/config/app_description.json

navbar-customization.service.ts
To add new items to the navbar or modify existing ones, this file is where you would implement
those changes.

cy-style-customization.service.ts
This service is responsible for customizing the styles of the visual elements. You can adjust the
appearance of nodes, edges, and other graphical components to fit your needs.

group-customization.service.ts
For implementing new grouping functionalities, such as clustering by developer or other criteria, you
can utilize this service. It allows for the creation and customization of groupings within the visual
interface.

context-menu-customization.service.ts
The context menu stands as a core feature within the SAA, facilitating effortless navigation between
artifacts and developer nodes. Each node type must possess a type-specific context menu.
Therefore, when introducing a new node type, it's imperative to define its context menu in the
context-menu-customization.service.ts file.

To integrate the context menu for a new node type and ensure navigation across different node

types, follow step-by-step instructions:

1. Within the context-menu-customization.service.ts file, introduce a context menu item

tailored for the new node type. This involves specifying the menu items, labels, and

actions associated with the context menu for seamless user interaction.

2. Go beyond merely adding the context menu for the new node type. Extend the other node

types' context menus by seamlessly incorporating context menu options that establish

meaningful connections with the new node type.

3. Include queries that illuminate relationships between the new node type and other existing

node types. This ensures that users can effortlessly comprehend the associations and

dependencies between different elements in the system.

4.3 operational-tabs

Operational tabs contain one subfolder for each operations tab. If developers wish to add a new
sub-tab, they can place the relevant components in the corresponding folders within the operational
tab where the new sub-tab is intended to be added. They also should add components into the
subtab lists inside the customization.module.ts.

/custom

|-- operational-tabs

https://github.com/iVis-at-Bilkent/software-artifact-analyzer/blob/unstable/src/app/custom/customization-service/context-menu-customization.service.ts
https://github.com/iVis-at-Bilkent/software-artifact-analyzer/blob/unstable/src/app/custom/customization-service/context-menu-customization.service.ts

| |-- object-tab

| |-- map-tab

| |-- database-tab

4.4 analyses

The analyses folder serves as a repository for housing various analysis components within a
system. These analysis components can be strategically organized into two main categories:
"custom queries," and "object queries".

Custom Queries: Under the "custom queries" section of the analyses folder, developers have the
flexibility to incorporate analysis components that cater to specific, user-defined queries or analytical
processes. This section provides a dynamic space for the inclusion of custom-tailored analyses,
allowing users to interact with the system in a way that aligns with their unique requirements and
objectives. Custom queries often involve more generalized analyses that span across different node
types, offering a broad spectrum of analytical capabilities within the application. For adding a query
component under custom queries you should add it to the list in the query list in the
customization.module.ts.

Figure 7: Custom Queries

Object Queries: The "object queries" section of the analyses folder is designated for analysis
components that are intricately linked to specific node types within the system. These analyses
focus on the characteristics, properties, and relationships associated with particular types of nodes.
Placing these components under "object queries" enhances the organization and accessibility of
node-specific analyses, streamlining the process for developers and users alike. Object queries
provide a more targeted approach to analyzing and extracting insights from the data associated with
individual node types, ensuring a more fine-grained understanding of the information present in the
system. Object queries are specific to each node type and they are under the queries subtab on the
Object operational tab.

https://github.com/iVis-at-Bilkent/software-artifact-analyzer/blob/unstable/src/app/custom/customization.module.ts

Figure 8: Object Queries

For adding a query component under object queries you should add it to the node type query list in
the object-queries.component.ts
To add a new analysis component you can implement the QueryComponent interface by following
these steps.

1. Create an angular component inside the analyses folder

ng generate component analyses/MyQueryComponent

2. Define a Data Model: Before implementing the QueryComponent, define the data model

(T) that represents the structure of the data you'll present as a table response.

interface MyDataModel {

// Define the properties of your data model here

}

3. Implement the QueryComponent Interface: Create a class that implements the

QueryComponent interface. This class will serve as your analysis component.

export class MyQueryComponent implements QueryComponent<MyDataModel> {

tableInput: TableViewInput = /* Initialize your TableViewInput */;

tableFilled = new Subject<boolean>();

tableResponse: MyDataModel = null;

graphResponse: GraphResponse = null;

https://github.com/iVis-at-Bilkent/software-artifact-analyzer/blob/unstable/src/app/custom/operational-tabs/object-tab/object-queries-tab/object-queries.component.ts

clearTableFilter = new Subject<boolean>();

ngOnInit(): void {

// Implement the OnInit lifecycle hook if needed

}

prepareQuery(): void {

// Implement the query preparation logic

}

loadTable(skip: number, filter?: TableFiltering): void {

// Implement the logic to load table data

}

loadGraph(skip: number, filter?: TableFiltering): void {

// Implement the logic to load graph data

}

filterGraphResponse(x: GraphResponse): GraphResponse {

// Implement the logic to filter graph response

}

fillTable(data: MyDataModel[], totalDataCount: number | null): void {

// Implement the logic to fill the table with data

}

getDataForQueryResult(e: any): void {

// Implement the logic to get data for a query result

}

filterTable(filter: TableFiltering): void {

// Implement the logic to filter the table

}

filterTableResponse(x: MyDataModel[], filter: TableFiltering):

MyDataModel[] {

// Implement the logic to filter the table response

}

}

4.4 Database Connection

To connect to the database, Software Artifact Analyzer uses environment variables. For each
different environment you would like to use, you should add a new environment file. You can make
your own files similar to these: environment.ts and environment.heroku.ts.

5 Starting Software Artifact Analyzer

5.1 Development Mode

Before running SAA in development mode, make sure to install the project dependencies using;

npm install

To run SAA in development mode, you can use the Angular CLI's ng serve command. This
command compiles the application, launches the development server, and opens your application in
a default web browser http://localhost:4200/.

npm run ng serve

5.2 Production Mode
To prepare your Angular application for production, you need to build the application using the
Angular CLI's ng build command. After building, you can use a simple Node.js server to serve the
production-ready application.

● Build the Angular application:

4. Customize Query Logic: Customize the prepareQuery, loadTable, and loadGraph

methods according to your specific data source and query requirements. Update the

GraphQL queries, REST API calls, or other data retrieval methods accordingly.

5. Handle Data Processing: Customize the fillTable, filterGraphResponse, filterTable, and

filterTableResponse methods to handle the processing and manipulation of the retrieved

data based on your application's needs.

6. Designing the HTML template and style it according to your analysis

You can easily reference the existing analysis components, such as

UnassignedBugsComponent, to gain insights into the implementation details. By making minor

modifications to the methods and structure, you can tailor the component to meet the specific

requirements of your analysis.

https://github.com/ugurdogrusoz/visuall/blob/master/src/environments/environment.ts
https://github.com/ugurdogrusoz/visuall/blob/master/src/environments/environment.ts
https://github.com/ugurdogrusoz/visuall/blob/master/src/environments/environment.heroku.ts
http://localhost:4200/
https://github.com/iVis-at-Bilkent/software-artifact-analyzer/blob/feature_expert_developer_finder/src/app/custom/analyses/anomalies/unassigned-bugs/unassigned-bugs.component.ts

npm run ng build

This will generate a dist/ directory containing the production-ready files.

● Start the Node.js server:

npm start

By default, the server will open on port 4400. You can access your production-ready application by
navigating to http://localhost:4400/ in your web browser.

For both the development mode and the production mode, you should also start the
Software-Analyzer-Configuration application flask server and UI as described in Sections 2.1 and
2.2, respectively.

6 Custom Procedure
A user-defined procedure is a mechanism that enables you to extend Neo4j by writing customized
code, which can be invoked directly from Cypher. Currently, for deploying custom queries for SAA
we add them into the saa-advanced-query project. The saa-advanced-query repository is a fork of
the original visuall-advanced-query repository, which serves as a foundation for advanced query
capabilities in the context of the Visuall [1] toolkit. The primary objective of saa-advanced-queries is
to extend the functionality provided by the original repository to cater to the specific requirements of
the SAA and its team of developers. This extension includes the addition of custom Java-based
Neo4j procedures tailored to the needs of SAA. Before beginning to write your custom procedure
please review the existing NEO4J document here to familiarize yourself with the process.

Here's a guideline for incorporating custom Java-based procedures into the saa-advanced-queries
repository for Neo4j:

1. Set Up Your Development Environment: Ensure that your development environment is set

up properly for Java development, including IDE setup and dependency management.

2. Clone the Repository: Clone the saa-advanced-queries repository to your local machine.

(we are currently using the unstable version)

3. Create a Feature Branch: Create a new feature branch from the main branch where you

will add your custom procedures. Make sure the branch name is descriptive of the feature

you're adding.

4. Implement Your Custom Procedure: Implement your custom Java-based procedure

following the standards and conventions of Neo4j procedures. Refer to the existing

procedures and the Neo4j documentation for guidance.

http://localhost:4450/
https://github.com/LaraMerdol/saa-advanced-query
https://github.com/LaraMerdol/saa-advanced-query
https://github.com/iVis-at-Bilkent/visuall-advanced-query
https://neo4j.com/docs/java-reference/current/extending-neo4j/procedures/
https://github.com/LaraMerdol/saa-advanced-query/tree/unstable
https://neo4j.com/docs/java-reference/current/extending-neo4j/procedures/

5. Test Your Procedure: Thoroughly test your procedure to ensure it works as expected. This

includes unit tests as well as integration tests with Neo4j. You can write your test inside

the AdvancedQueryTest.java

6. Update README and Documentation: Update the README file and any other relevant

documentation to include information about your new procedure. This ensures that other

developers are aware of its existence and how to use it.

7. Create an Executable Jar File: Build your project to create an executable JAR file

containing your custom procedure along with any dependencies.
mvn clean install

8. Add executable JAR files containing custom procedures as plugins to Neo4j:

a. Find the plugins directory within your Neo4j installation. This directory is typically

named plugins and is located within the Neo4j installation directory.

b. Copy the JAR File: Copy the executable JAR file containing your custom

procedures into the plugins directory.

c. Restart Neo4j: Restart the Neo4j database server to allow it to detect and load the

newly added plugin. This step is essential for Neo4j to recognize and make use of

the custom procedures contained within the JAR file.

9. Verify Installation: Once Neo4j has restarted, verify that the custom procedures from your

JAR file have been successfully loaded and are available for use. You can do this by

checking the Neo4j logs for any errors during startup and testing the custom procedures'

functionality through Cypher queries.

10. Usage in Cypher Queries: With the custom procedures successfully installed as plugins,

you can now use them in Cypher queries within Neo4j. Invoke the procedures using the

CALL syntax followed by the procedure name and any required parameters.

References
[1] i-Vis Research Laboratory. 2021. “Visuall: A tool for convenient construction of a web-based

visual analysis component”, Bilkent University, Ankara, Turkey.

[2] APOC Library, "Awesome Procedures for Neo4j 5.21.0.x (Extended)," 2024. [Online].

Available: https://github.com/neo4j/apoc. [Accessed: 07-Jul-2024].

https://github.com/LaraMerdol/saa-advanced-query/blob/master/src/test/java/org/ivis/visuall/AdvancedQueryTest.java
https://github.com/LaraMerdol/saa-advanced-query/blob/unstable/README.md

