
Software Artifact Analyzer
User Guide

Version 1.0.0 July 2024

1 Introduction.. 2
2 Getting Started with Software Artifact Analyzer (SAA).. 2
2 Menubar... 5

2.1 Project Menu... 5
2.1.1 New Project Modal... 5
2.1.1 About Project..7

2.2 File Menu.. 7
2.3 Edit Menu.. 8
2.3 View Menu...10
2.4 Highlight Menu...11
2.5 Layout Menu... 13
2.6 Help Menu...15
2.7 Data Menu...15
2.8 Context Menus.. 16

3 Toolbar.. 22
4 Objects.. 23

4.1 Object Inspection Tab..23
4.2 Object Statistics Tab..24
4.3 Object Report Tab... 24

4.3.1 Report Issue... 24
4.3.2 Report Pull Request... 25
4.3.3 Report Commit and File... 26
4.3.5 Report Developer... 27

4.4 Object Queries Tab... 27
4.4.1 Expert Recommendation For File Node... 27
4.4.2 Reviewer Recommendation For Pull Request Node..28

5 Map.. 29
5.1 Filter by Node/Edge Type..29
5.2 Query by Rule... 30
5.3 Group Nodes...31

6 Database... 32
6.1 General Queries..32
6.2 Custom Queries.. 32

6.2.1 Get Commits of Developer... 32
6.2.2 Get Issue Anomalies.. 32
6.2.4 Get Issue Anomaly Statistics..34

1 Introduction
This guide will show you how to use Software Artifact Analyzer tool (SAA), which is designed to
enhance efficiency in software development processes. SAA meticulously analyzes various
software artifacts, including source code files, pull requests, issues, and commits, and their
interconnected relationships with developers within a project. It uses an advanced drawing canvas
with features such as context menus and visual cues to facilitate this comprehensive analysis. SAA
uses a structured approach, and at its core is a toolkit named Visuall [1], which provides a solid
foundation for its functionalities, such as the user-friendly interface for developers to interact with
the system. With this interface, developers can explore and make informed decisions by leveraging
insights derived from the comprehensive artifact traceability graph.

The SAA is designed to cater to projects utilizing GitHub as a git source and Jira as a issue tracking
tool. Also, if you want to customize SAA and use it with other CASE tools, following a structured
approach will make it easier to integrate those additional tools. The tool engine integrates
seamlessly with GitHub and Jira APIs, allowing for data access and interaction with these
platforms. SAA is also equipped with core functions like finding the proper reviewer for the pull
request or experts for a file, as well as detecting the bug process smells in the project. In essence,
SAA should be a valuable asset for software development teams as it provides a clear and intuitive
pathway to delve into software artifacts, understand their relationships, and make informed
decisions throughout the development lifecycle.

As many features are inherited from the base toolkit Visuall [1], you might want to refer to Visuall’s
User’s Guide for details of most generic features.

2 Getting Started with Software Artifact Analyzer
(SAA)

Figure 1: CASE tools integration flow

To start using SAA, you first need to install the Software Artifact Analyzer GitHub Application. Visit
the GitHub application page and install the SAA application on your GitHub user account. Select a
specific project or grant permission to all projects.

https://docs.google.com/document/d/1YAl43m63T1Zovi-yOQECWyr8_o9hWkMUN6TlcGdk63Y/edit?usp=sharing
https://docs.google.com/document/d/1YAl43m63T1Zovi-yOQECWyr8_o9hWkMUN6TlcGdk63Y/edit?usp=sharing
https://github.com/apps/software-artifact-analyzer

Figure 2: SAA GitHub application repository selection page

After installation, you will be redirected to SAA for further authentication from Jira. Click on "Jira" to
proceed to the Jira authentication page and grant permission to the Jira instance you want to use with
SAA.

Figure 3: SAA Atlassian application Jira instance selection page

Next, you will be redirected to the SAA Neo4j instance credentials page. Here, you can either
continue with the default option or provide credentials for your own Neo4j instance.

Figure 4: SAA Neo4j instance entering page

After selecting your Neo4j instance, you will be redirected back to the SAA page.

2 Menubar
Menubar contains options for performing project, file, editing, view, highlight, and layout operations.
A frequently used subset of these operations also appears in the Toolbar for convenience.

Figure 5: Menubar

2.1 Project Menu
The project menu allows users to open new projects and learn certain statistics about the current
project.

2.1.1 New Project Modal
From the "Project | New..." tab one can retrieve their project data and build a new Neo4j database
in 4 steps.

Figure 6: "Data Retrieval" step user interface

1. To retrieve project credentials for Github and Jira accounts, one should proceed as follows:
- Navigate to the "Data Retrieval" step
- Enter the project credentials for Github and Jira

Note: New users can test the application using open-source Apache example projects
(without authentication) available under a dropdown menu.

2. To identify potential mergers among similar developers' groups (instances with the same
developer), one can navigate to the "Similarity Groups" step. When reviewing the detected
similar developer groups, if the user agrees with the detection, they accept the mergers by
selecting the corresponding option.

Figure 7: "Similarity Groups" step user interface

3. If similar developers' groups are not identified during the "Similarity Groups" step, you can
still add new similarity groups or modify existing ones from the "Developers" step.

Figure 8:" All Developers" step user interface

4. SAA allows users to filter data based on a specified time span. Users can select the start
and end dates, as well as the inclusion type for software artifacts. This feature helps reduce
data complexity and focus analysis on specific cases, enhancing the overall user
experience.

Figure 9: "Date Filtering" step user interface

5. After completing the data retrieval and cleaning process, you can confirm the data and then
instruct the SAA to build the project's artifact traceability graph from the retrieved data.

2.1.1 About Project
From the "Project | About..." tab, you can learn the key details about the current project on the
system. Furthermore, one can also learn about the key statistics of the project like the number of
nodes and edges.

Figure 10: "About" modal

2.2 File Menu
The File menu allows one to save the current map to disk (in JSON format) and load it back when
needed. Instead of the entire current map, you can also save a selected subset of elements of the
map. Persistency maintains style information as well as the topology.

Figure11: Save as PNG

This menu also allows you to save the current map as a static PNG image.

Finally using this menu the user may save their profile (Settings, Filtering Rules, and Timebar
Statistics) on disk in a proprietary format (“.vall” file) to exchange with others (see “File | Load User
Profile...”).

2.3 Edit Menu
The Edit menu allows the user to delete selected objects from the map. Furthermore, the user can
add or remove groups through this menu. Groups may be represented with either compound nodes
or with clusters represented with circles upon automatic layout (see the section on groups for
details of this option). See below for an example using both representations for the same map: (left)
compounds, and (right) circles.

Figure 8: Group nodes representation (left) with compounds, and (right) with circles

Finally, this menu can be used to show a history of queries (“Edit | Query History”) executed. When

you mouse over the icon in the dialog that pops up, you will be shown a picture of the map in
your drawing canvas at that moment. If you click on a particular one, the map is reverted to the
graph at that moment. This is intended to undo the latest operation(s) and go back to a previous
state.

https://docs.google.com/document/d/1YAl43m63T1Zovi-yOQECWyr8_o9hWkMUN6TlcGdk63Y/edit#heading=h.kix7b7wo6ihj

Figure 9: Query History

2.3 View Menu
The View menu contains operations to manage the complexity of the map by temporarily hiding
selected map objects and showing them back when needed. Notice that this is different from
deletion, which permanently deletes the map objects from the Cytoscape.js model (unless you
perform a subsequent database query and bring back the same object(s)) and hence the client.
Below you will find: an original map with certain objects selected after selected objects are hidden
using “View | Hide Selected”, and when all map content in the client is shown with “View | Show
All”.

Figure 10: Hide Selected

The user can also expand or collapse (compound) nodes and (multiple) edges from the View menu.
Collapsed multiple edges will be counted as “meta edges” under the Statistics tab.

Below is an example showing expanded (left) and collapsed (right) edges:

Figure 11: Expand or collapse (multiple) edges

Below is an example showing expanded (left) and collapsed (right) nodes. In order for visual cues
that are used to collapse (“-” icon) or expand (“+” icon) nodes to appear, the associated compound
node must be selected first.

Figure 12: Expand or collapse (compound) nodes

2.4 Highlight Menu
The Highlight menu aims to draw attention to certain map objects (e.g., a group of nodes and/or
edges or paths in the underlying network). The user may use this menu to highlight map objects by
either selecting them or by typing a string to match in the search box located in the Toolbar. This
string is searched for in labels or other properties (numbers are converted to strings before such a
search is applied) of graph objects. Below is the result of searching the string "library" in a sample
map. Note that the search will be case-sensitive or insensitive depending on the associated setting.

Figure 13: Result of searching the string "library"

By default, some highlight styles have been defined under Settings. The user may modify these
styles or add new ones by specifying a certain color and padding. All highlights made so far could
be removed from the map using “Highlight | Remove Highlights”.

Check Anomalies
Users can add anomaly badges within the highlight menu to further investigate anomalies on the
map by selecting “Highlight | Check Anomalies”. Anomaly badges also include a tooltip. By
hovering the node badges, one can also show the list of the anomalies in the issue. For a deeper
understanding of the anomalies detected, refer to Section 6.2.2 for detailed information on their
types.

Figure 14: Adding anomaly badges

2.5 Layout Menu
The layout operations may be used to "tidy up" the layout of the current map using “Layout |
Perform Layout”. This operation takes the current locations of map objects into account and
performs an incremental layout by optimizing their geometric distances to be in line with their
graph-theoretic distances. However, if you think that you're not happy with the current layout and
would like a new one to be calculated from scratch, then you should perform “Layout | Recalculate
Layout”. Notice that an incremental layout is applied to some interactive operations where the result
of a query is merged into the current map instead of replacing it. When, however, the result of an
operation is to replace the current map content, the layout is recalculated from scratch. Below is the
same sample software artifact network laid out randomly, and automatically by SAA.

Figure 15: Sample software artifact network laid out randomly (top), and automatically (bottom)

The particular layout style used depends on whether or not the grouping of nodes is defined and
how the user prefers to represent such groupings for their map. Visuall uses CiSE layout [2] when
circle representation is preferred, and fCoSE layout [3] otherwise. Both layout styles support
performing the layout incrementally respecting current node positions and trying to preserve the
user’s mental map as the map topology changes.

https://github.com/iVis-at-Bilkent/cytoscape.js-cise
https://github.com/iVis-at-Bilkent/cytoscape.js-fcose

2.6 Help Menu
Find quick assistance under the Help menu, where you can easily discover various gestures for
manipulating drawings on the canvas. Additionally, access the About dialog to view the last build
date. Users can also explore the Legend dialog, which provides information on the existing node
and edge types within the current project.

Figure 15: Legend

2.7 Data Menu
The Data menu provides easy access to load some sample data or to delete all the data on the
map. This sample respects the current time range. The sample data will only provide a random
sample of data, which is limited to 20 nodes and edges. As a result, it will only display a portion of
the graph and not all nodes and relationships.

Another method to initiate data loading is by launching SAA with query parameters. If you wish to
view a specific node along with its immediate neighboring nodes, you can opt for the query
parameter option by specifying the name of the artifact as a parameter, as demonstrated below.

Alternatively, you can also specify the limit number of neighbors using a query parameter. The
query will retrieve the most recent neighbors up to the specified number. If you set limit=true, it
will use the default limit of 7.

https://docs.google.com/document/d/1YAl43m63T1Zovi-yOQECWyr8_o9hWkMUN6TlcGdk63Y/edit#heading=h.f8aocmbz9zmq

Figure 16: Data loading with query parameters

2.8 Context Menus
The other useful component of SAA is context menus that are custom to each object type. We have
implemented many queries that enable the user to trace the paths between different artifacts for
analyzing software processes in the project. Some of the examples can be found below.
Furthermore, we add a hide option for all show options to give users a more convenient experience.

Commit’s Context Menu

The user can learn a lot of information about a specific commit from the context menu of the commit
type nodes. Such as who is the author, which pull request includes the commit, which files change
with the commit, and who is the reviewer of the pull request that includes the commit (reviewer of
the commit).

Figure 17: Commit’s Context Menu

Show Commit's Reviewer: This option gets the developers who review the pull request that the
selected commit included.

Figure 18: Commit’s Context Menu | Show Reviewer

Developer's Context Menu

From the context menu of the developer-type nodes, the user can learn developer pull requests,
issues, committed pull requests, committed files, and many other things.

Figure 19: Developer’s Context Menu

Show Files That Developer Commits Into: This option gets files that the developer commits into.

Figure 20: Developer’s Context Menu | Show Files Committed Into

File's Context Menu

From the context menu of the file type nodes, the user can learn renamed files, commits,
developers that commit into the file, pull requests that modify the file, and related issues about the
file.

Figure 21: File's Context Menu
Show Issues Related to File: This option gets the issues related to commits that include selected
files.

Figure 22: File’s Context Menu | Show Related Issues

Issue's Context Menu

From the context menu of the issue-type nodes, the user can learn referenced commits and pull
requests, related files, related developers, and developers who commit to the issue.

Figure 23: Issue’s Context Menu

Show Developers Commit for Issue: This option gets the developers whose commit references
the selected issue.

Figure 24: Issue’s Context Menu | Show Committed Developers

Pull Request's Context Menu

From the context menu of the pull request type nodes, the user can learn referenced issues, related
developers, commits, and files that change with the pull request.

Figure 25: Pull Request Context Menu

Show Changed Files With Pull Request: This option gets the files that change due to the
selected pull request.

Figure 26: Pull Request Context Menu | Show Files Modified

3 Toolbar
A toolbar is available right under the Menubar to list some frequently needed operations grouped in
the same manner as the menu.

Of particular interest is a time range used to limit database queries. When enabled, the time bar will
also use this range for the default begin and end values of objects in case the corresponding data
does not exist.

Figure 27: Time range

4 Objects

4.1 Object Inspection Tab
Each node and edge has a set of properties (property-value pairs). If you click on a graph object (a
node or an edge) to select it, any current selection will be removed and the graph object that you
clicked on will be selected. As a graph object is selected, its properties are shown on the right panel
under the Object tab. Below is a map where a pull request was selected and is being inspected in
the Object tab in the right panel.

Figure 28: Object Inspection Tab

4.2 Object Statistics Tab
Under the Object tab, there is a sub-section named “Statistics”. This section shows statistics about
the current objects on the map. An object could be hidden or selected. Statistics will show the count
of objects based on their class/type.

Figure 29: Object Statistics Tab

4.3 Object Report Tab
The SAA provides users with the ability to report analysis results or observations on Github or Jira
platforms if they have authenticated their login to the tool as described in Section 2.1.1. Users can
submit their report as a comment under a Pull Request in Github or an Issue comment in Jira. This
feature allows high integration of SAA with those platforms and aids in usability and practicality. The
report tabs are unique to each node type.

4.3.1 Report Issue
In the Report tab, users can seamlessly document their observations to Jira after selecting the
issue node. To enhance the clarity of their reports, users have the option to incorporate the current
status of the drawing canvas by simply clicking the Graph checkbox. This action adds a rendered
image of the graph to the report, providing a visual representation. Additionally, users can directly
highlight anomalies detected during their evaluation by checking the "Anomaly" checkbox and
specifying the types of anomalies to be considered. For anomaly detection queries you can check
Section 6.2.2. Once these selections are made, pressing the "Add" button integrates the chosen
information into the report. This streamlined process ensures that users can efficiently
communicate their findings and contribute to a comprehensive understanding of the issue at hand.

Figure 30: Issue Report Tab

4.3.2 Report Pull Request
In the "Report" tab, users can seamlessly document their observations to Github after selecting the
pull request node. To enhance the clarity of their reports, users have the option to incorporate the
current status of the drawing canvas by simply clicking the Graph checkbox. This action adds a
rendered image of the graph to the report, providing a visual representation. Moreover, users have
the option to append reviewer recommendations to the report by marking the "Reviewer
Recommendation" checkbox. For details on reviewer recommendations, refer to section 4.4.2.
Once these choices are finalized, clicking the "Add" button seamlessly integrates the selected
information into the report. This straightforward process ensures users can effectively convey their
observations, fostering a thorough understanding of the pull request.

Figure 31: Pull Request Report Tab

4.3.3 Report Commit and File
Within the Commit and File nodes Report tab, users can effortlessly document their observations
on GitHub upon selecting the commit node. When reporting commits or files under pull request
nodes, users should also specify the pull request node under which they intend to document the
commit. To enhance the clarity of their reports, users have the option to incorporate the current
status of the drawing canvas by simply clicking the "Graph" checkbox. This action adds a rendered
image of the graph to the report, providing a visual representation.

Figure 32: Commit Report Tab

Figure 33: File Report Tab

4.3.5 Report Developer
In the Developer Node Report tab, users can effortlessly document their observations on GitHub or
Jira by selecting the developer node. When reporting developer nodes, users should indicate the
platform (GitHub or Jira) to which they plan to report and specify the corresponding artifact. For
Jira, it should be an issue, and for GitHub, it should be a pull request. To improve the clarity of their
reports, users can seamlessly include the current status of the drawing canvas with a simple click
on the "Graph" checkbox. This adds a visual representation, and a rendered image of the graph,
enhancing the overall comprehensibility of the report.

Figure 34: Developer Report Tab

4.4 Object Queries Tab
The queries tab under the object menu is used for analysis of components that are intricately linked
to specific node types within the system. These analyses focus on the characteristics, properties,
and relationships associated with particular types of nodes. Object queries provide a more targeted
approach to analyzing and extracting insights from the data associated with individual node types,
ensuring a more fine-grained understanding of the information present in the system. Object
queries are specific to each node type.

4.4.1 Expert Recommendation For File Node
In the File Request Query tab users have the option to select the expert recommendation query.
The analysis is presented in both table and graph formats, offering flexibility. Users can customize

their view by choosing the number of recommendations to display and incorporating a recency
factor for calculation, considering the novelty of the action. The table results furnish a list of
recommended reviewers, each accompanied by their respective scores. Meanwhile, the graph
results provide the choice to display the graph either clustered by recommended developers or not.
Clustering by recommended developers helps users gain a clearer understanding of the
relationships between developers and the associated artifacts within the changeset.

Figure 35: Expert Recommendation Object Query

4.4.2 Reviewer Recommendation For Pull Request Node
In the Pull Request Query tab, users have the option to select the reviewer recommendation query.
The analysis is presented in both table and graph formats. Users can customize their view by
choosing the number of recommendations to display and incorporating a recency factor for
calculation. The table results furnish a list of recommended reviewers, each accompanied by their
respective scores. Meanwhile, the graph results provide the choice to display the graph either
clustered by recommended developers or not. Clustering by recommended developers helps users
gain a clearer understanding of the relationships between developers and the associated artifacts
within the changeset.

Figure 36: Reviewer Recommendation Object Query

5 Map

5.1 Filter by Node/Edge Type
One simple yet important way to reduce the complexity of a drawing is to filter out certain types of
objects or relationships from your map. Visuall [1] facilitates this by providing a button per graph
object. Below is an example of a map with all node and edge types (top) and the same map after
the COMMENTED edge was filtered out (bottom).

Figure 37: Filter by Node/Edge Type

5.2 Query by Rule
Often, users would like to filter the content available in a database or on the client side using certain
rules. SAA, via Visuall [1], enables users to execute their queries. One can call an object with a
given property and combine different rules with logic operators. For more detailed information, refer
to the Visuall User Guide. For instance, if one is interested in issues with the issue type
"Improvement" and created before 2024, they can put together a rule composed of both
components as depicted in Figure 28.

Figure 38: Query by Rule

https://docs.google.com/document/d/1YAl43m63T1Zovi-yOQECWyr8_o9hWkMUN6TlcGdk63Y/edit#heading=h.rl9k1btrshoi

5.3 Group Nodes
Grouping nodes is a frequently used feature in graph visualization tools to manage graph
complexity. Through Visuall [1], users can group nodes based on map topology. For more
information, one can refer to Visuall User Guide. Additionally, users can group nodes based on
developers. This means that a developer and the artifacts associated with that developer are
grouped. However, if an artifact is associated with multiple developers, it is not grouped with any
specific developer.

Figure 39: Group Nodes

Figure 40: Group by developer

https://docs.google.com/document/d/1YAl43m63T1Zovi-yOQECWyr8_o9hWkMUN6TlcGdk63Y/edit#heading=h.kix7b7wo6ihj

6 Database

6.1 General Queries
Using “General Queries”, the user can execute Neighborhood, Graph of Interest, or Common
Targets/Regulators queries. For more details, you can refer to Visuall User Guide.

6.2 Custom Queries
The custom queries section is where all queries are stored, including object queries. If you're
looking for object-specific queries like reviewer recommendations for pull request nodes, you'll need
to indicate the node name. You have the option to choose between text-based results or graphical
representations for a more comprehensive analysis, which applies to all queries.

6.2.1 Get Commits of Developer
This is a simple custom object query for getting the commits of the selected developer.

Figure 41: Get Commits of Developer Custom Query

6.2.2 Get Issue Anomalies
During software evaluation, various process anomalies may occur, leading to regression in the
process. SAA can detect 11 types of different bug-tracking process anomalies categorized by
Qamar et al [2]. A list of the anomalies and their description can be found in the table below. Users
can amplify the visual representation of anomalies by incorporating anomaly badges, which
showcase the number and types of anomalies detected. These badges are accessible at any point
during analysis from the toolbar, as elucidated in Section 2.4.

https://docs.google.com/document/d/1YAl43m63T1Zovi-yOQECWyr8_o9hWkMUN6TlcGdk63Y/edit#heading=h.13a82h6wny49

Anomaly Name Anomaly Description

Unassigned Bugs Issues that have been fixed and closed, but not assigned to any person.

No Link to Bug-Fixing Commit A bug was closed without a commitment link to a bug fix (commit).

Ignored Bugs
Bugs that have been left open for an extended period or have incomplete
resolutions.

Missing Priority A bug that is not prioritized, making it difficult to determine its severity.

Not referenced duplicates Bugs that are duplicates and have no reference to the original bug.

Missing Environment
Information

An error that is missing environment information, such as version, operating
system, and product components.

Reassignment of Bug Assignee
The person responsible for resolving the bug has been changed more times
than the specified number of times.

No comment bugs A resolved bug that does not contain a comment.

Non-Assignee Resolver of Bug The person who resolved the bug is different from the assigned person.

Closed-Reopen Ping Pong Bugs that are closed and reopened within a specific period.

Same Resolver Closer The person who resolved the bug is different from the assigned person.

Table 1: Bug process anomalies with descriptions

Figure 42: Get Issue Anomalies Custom Query

Furthermore, we acknowledge that specific anomalies, such as 'Ignored Bugs', may necessitate a
custom threshold to qualify as anomalies, a requirement that may vary based on project
specifications. To address this, we offer customizable settings to adjust their default values
accordingly. Within the Settings Anomalies tab, users have the flexibility to define custom
thresholds for anomalies, tailoring them to better suit their project needs.

6.2.4 Get Issue Anomaly Statistics
Another handy custom query we have is called "Anomaly Statistics." This query is perfect for
gathering issues with a specific number of anomalies. It's handy when you want to focus on
learning from issues that contain a high number of anomalies. To run this query, users just need to
pick the number of anomalies they're interested in and then click execute. It's a straightforward
process that helps users quickly get insights into issues.

Figure 44: Issue Anomalies Statistics

References
[1] i-Vis Research Laboratory. 2021. “Visuall: A tool for convenient construction of a web-based

visual analysis component”, Bilkent University, Ankara, Turkey.

[2] U. Dogrusoz, M. E. Belviranli, and A. Dilek, ‘CiSE: A Circular Spring Embedder Layout
Algorithm’, IEEE Transactions on Visualization and Computer Graphics, vol. 19, no. 6, pp.
953–966, Jun. 2013.

[3] H. Balci and U. Dogrusoz, "fCoSE: A Fast Compound Graph Layout Algorithm with
Constraint Support," in IEEE Transactions on Visualization and Computer Graphics, 28(12),
pp. 4582-4593, 2022.

[4] K. A. Qamar, E. Sülün, and E. Tüzün, “Taxonomy of bug tracking process smells:
Perceptions of practitioners and an empirical analysis,” Information and Software
Technology, vol. 150, p. 106972, 2022. doi:10.1016/j.infsof.2022.106972

